about · email me · subscribe
Spurious correlation #5,876 · View random

A linear line chart with years as the X-axis and two variables on the Y-axis. The first variable is The number of movies Halle Berry appeared in and the second variable is Lionel Messi's goal count for Argentina.  The chart goes from 2006 to 2022, and the two variables track closely in value over that time. Small Image
Download png
, svg

AI explanation

As Halle Berry's movie count rises, so does the frequency of movie premieres. These star-studded events create a ripple effect, leading to a surge in red carpet appearances. Now, red carpets are notoriously red, just like the jerseys of Messi's opponents. The increased visibility of red activates a subconscious association in Messi's mind, triggering his goal-scoring instincts. It's like he's been hypnotized to see the net as a giant red carpet, and he just can't help but score in style. Who knew Halle Berry's on-screen performances could have an off-field impact on Messi's on-field magic?


Random correlation

Discover a new correlation

View all correlations

View all research papers

Report an error


Data details

The number of movies Halle Berry appeared in
Source: The Movie DB
Additional Info: Things We Lost in the Fire (2007); Gothika (2003); Perfect Stranger (2007); The Rich Man's Wife (1996); Their Eyes Were Watching God (2005); B.A.P.S. (1997); Introducing Dorothy Dandridge (1999); Frankie & Alice (2010); Race the Sun (1996); Dark Tide (2012); Solomon & Sheba (1995); The Call (2013); The Wedding (1998); For Love of Liberty: The Story of America's Black Patriots (2010); AFI: 100 Years... 100 Movies... 10th Anniversary Edition (2007); Catwoman (2004); Kidnap (2017); Kings (2017); Moonfall (2022); Bruised (2020); Power of Women: The Changemakers (2022); Losing Isaiah (1995); Die Another Day (2002); Strictly Business (1991); Father Hood (1993); Why Do Fools Fall In Love (1998); The Program (1993); Cloud Atlas (2012); Kevin Hart: What Now? (2016); John Wick: Chapter 3 - Parabellum (2019); Monster's Ball (2001); Executive Decision (1996); Boomerang (1992); Robots (2005); Bond Girls Are Forever (2002); Shaken and Stirred on Ice (2002); Sidney (2022); Swordfish (2001); John Travolta: The Inside Story (2004); X-Men: Premieres Around the World (2003); Soul of a Nation Presents: Screen Queens Rising (2022); X-Men (2000); X-Men: The Last Stand (2006); Kingsman: The Golden Circle (2017); Die Another Day: From Script to Screen (2002); The Flintstones (1994); X2 (2003); Catwoman: The Feline Femme Fatale (2021); The Evolution of an American Filmmaker (2003); The Last Boy Scout (1991); X-Men: Days of Future Past (2014); Dorothy Dandridge: An American Beauty (2003); Thug Rose: Mixed Martial Artist (2022); The Many Faces of Catwoman (2005); Whitney Houston - We Will Always Love You (2012); New Year's Eve (2011); X-Men: The Mutant Watch (2000); Jungle Fever (1991); Bulworth (1998); Welcome to Hollywood (1998); Christmas from Hollywood (2003); Movie 43 (2013); The Concert for New York City (2001); 2021 Rock & Roll Hall of Fame Induction Ceremony (2021); Celebrating Marvel's Stan Lee (2019); Girl 6 (1996); Once Upon a Time: The Super Heroes (2001); CB4 (1993); And the Oscar Goes to... (2014); America: A Tribute to Heroes (2001)

See what else correlates with The number of movies Halle Berry appeared in

Lionel Messi's goal count for Argentina
Detailed data title: Lionel Messi's goal for Argentina
Source: Wikipedia
See what else correlates with Lionel Messi's goal count for Argentina

Correlation r = 0.7410954 (Pearson correlation coefficient)
Correlation is a measure of how much the variables move together. If it is 0.99, when one goes up the other goes up. If it is 0.02, the connection is very weak or non-existent. If it is -0.99, then when one goes up the other goes down. If it is 1.00, you probably messed up your correlation function.

r2 = 0.5492224 (Coefficient of determination)
This means 54.9% of the change in the one variable (i.e., Lionel Messi's goal count for Argentina) is predictable based on the change in the other (i.e., The number of movies Halle Berry appeared in) over the 17 years from 2006 through 2022.

p < 0.01, which is statistically significant(Null hypothesis significance test)
The p-value is 0.00066. 0.0006643744593485389000000000
The p-value is a measure of how probable it is that we would randomly find a result this extreme. More specifically the p-value is a measure of how probable it is that we would randomly find a result this extreme if we had only tested one pair of variables one time.

But I am a p-villain. I absolutely did not test only one pair of variables one time. I correlated hundreds of millions of pairs of variables. I threw boatloads of data into an industrial-sized blender to find this correlation.

Who is going to stop me? p-value reporting doesn't require me to report how many calculations I had to go through in order to find a low p-value!
On average, you will find a correaltion as strong as 0.74 in 0.066% of random cases. Said differently, if you correlated 1,505 random variables Which I absolutely did.
with the same 16 degrees of freedom, Degrees of freedom is a measure of how many free components we are testing. In this case it is 16 because we have two variables measured over a period of 17 years. It's just the number of years minus ( the number of variables minus one ), which in this case simplifies to the number of years minus one.
you would randomly expect to find a correlation as strong as this one.

[ 0.4, 0.9 ] 95% correlation confidence interval (using the Fisher z-transformation)
The confidence interval is an estimate the range of the value of the correlation coefficient, using the correlation itself as an input. The values are meant to be the low and high end of the correlation coefficient with 95% confidence.

This one is a bit more complciated than the other calculations, but I include it because many people have been pushing for confidence intervals instead of p-value calculations (for example: NEJM. However, if you are dredging data, you can reliably find yourself in the 5%. That's my goal!


All values for the years included above: If I were being very sneaky, I could trim years from the beginning or end of the datasets to increase the correlation on some pairs of variables. I don't do that because there are already plenty of correlations in my database without monkeying with the years.

Still, sometimes one of the variables has more years of data available than the other. This page only shows the overlapping years. To see all the years, click on "See what else correlates with..." link above.
20062007200820092010201120122013201420152016201720182019202020212022
The number of movies Halle Berry appeared in (Movie appearances)13002132201302125
Lionel Messi's goal count for Argentina (Goals scored)2623241268484451918




Why this works

  1. Data dredging: I have 25,153 variables in my database. I compare all these variables against each other to find ones that randomly match up. That's 632,673,409 correlation calculations! This is called “data dredging.” Instead of starting with a hypothesis and testing it, I instead abused the data to see what correlations shake out. It’s a dangerous way to go about analysis, because any sufficiently large dataset will yield strong correlations completely at random.
  2. Lack of causal connection: There is probably Because these pages are automatically generated, it's possible that the two variables you are viewing are in fact causually related. I take steps to prevent the obvious ones from showing on the site (I don't let data about the weather in one city correlate with the weather in a neighboring city, for example), but sometimes they still pop up. If they are related, cool! You found a loophole.
    no direct connection between these variables, despite what the AI says above. This is exacerbated by the fact that I used "Years" as the base variable. Lots of things happen in a year that are not related to each other! Most studies would use something like "one person" in stead of "one year" to be the "thing" studied.
  3. Observations not independent: For many variables, sequential years are not independent of each other. If a population of people is continuously doing something every day, there is no reason to think they would suddenly change how they are doing that thing on January 1. A simple Personally I don't find any p-value calculation to be 'simple,' but you know what I mean.
    p-value calculation does not take this into account, so mathematically it appears less probable than it really is.




Try it yourself

You can calculate the values on this page on your own! Try running the Python code to see the calculation results. Step 1: Download and install Python on your computer.

Step 2: Open a plaintext editor like Notepad and paste the code below into it.

Step 3: Save the file as "calculate_correlation.py" in a place you will remember, like your desktop. Copy the file location to your clipboard. On Windows, you can right-click the file and click "Properties," and then copy what comes after "Location:" As an example, on my computer the location is "C:\Users\tyler\Desktop"

Step 4: Open a command line window. For example, by pressing start and typing "cmd" and them pressing enter.

Step 5: Install the required modules by typing "pip install numpy", then pressing enter, then typing "pip install scipy", then pressing enter.

Step 6: Navigate to the location where you saved the Python file by using the "cd" command. For example, I would type "cd C:\Users\tyler\Desktop" and push enter.

Step 7: Run the Python script by typing "python calculate_correlation.py"

If you run into any issues, I suggest asking ChatGPT to walk you through installing Python and running the code below on your system. Try this question:

"Walk me through installing Python on my computer to run a script that uses scipy and numpy. Go step-by-step and ask me to confirm before moving on. Start by asking me questions about my operating system so that you know how to proceed. Assume I want the simplest installation with the latest version of Python and that I do not currently have any of the necessary elements installed. Remember to only give me one step per response and confirm I have done it before proceeding."


# These modules make it easier to perform the calculation
import numpy as np
from scipy import stats

# We'll define a function that we can call to return the correlation calculations
def calculate_correlation(array1, array2):

    # Calculate Pearson correlation coefficient and p-value
    correlation, p_value = stats.pearsonr(array1, array2)

    # Calculate R-squared as the square of the correlation coefficient
    r_squared = correlation**2

    return correlation, r_squared, p_value

# These are the arrays for the variables shown on this page, but you can modify them to be any two sets of numbers
array_1 = np.array([1,3,0,0,2,1,3,2,2,0,1,3,0,2,1,2,5,])
array_2 = np.array([2,6,2,3,2,4,12,6,8,4,8,4,4,5,1,9,18,])
array_1_name = "The number of movies Halle Berry appeared in"
array_2_name = "Lionel Messi's goal count for Argentina"

# Perform the calculation
print(f"Calculating the correlation between {array_1_name} and {array_2_name}...")
correlation, r_squared, p_value = calculate_correlation(array_1, array_2)

# Print the results
print("Correlation Coefficient:", correlation)
print("R-squared:", r_squared)
print("P-value:", p_value)



Reuseable content

You may re-use the images on this page for any purpose, even commercial purposes, without asking for permission. The only requirement is that you attribute Tyler Vigen. Attribution can take many different forms. If you leave the "tylervigen.com" link in the image, that satisfies it just fine. If you remove it and move it to a footnote, that's fine too. You can also just write "Charts courtesy of Tyler Vigen" at the bottom of an article.

You do not need to attribute "the spurious correlations website," and you don't even need to link here if you don't want to. I don't gain anything from pageviews. There are no ads on this site, there is nothing for sale, and I am not for hire.

For the record, I am just one person. Tyler Vigen, he/him/his. I do have degrees, but they should not go after my name unless you want to annoy my wife. If that is your goal, then go ahead and cite me as "Tyler Vigen, A.A. A.A.S. B.A. J.D." Otherwise it is just "Tyler Vigen."

When spoken, my last name is pronounced "vegan," like I don't eat meat.

Full license details.
For more on re-use permissions, or to get a signed release form, see tylervigen.com/permission.

Download images for these variables:


View another random correlation

How fun was this correlation?

Your rating skills are legendary!


Correlation ID: 5876 · Black Variable ID: 26628 · Red Variable ID: 72
about · subscribe · emailme@tylervigen.com · twitter

CC BY 4.0